Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 29, 2027
-
In May and June of 2021, marine microbial samples were collected for DNA sequencing in East Sound, WA, USA every 4 hours for 22 days. This high temporal resolution sampling effort captured the last 3 days of aRhizosoleniasp. bloom, the initiation and complete bloom cycle ofChaetoceros socialis(8 days), and the following bacterial bloom (2 days). Metagenomes were completed on the time series, and the dataset includes 128 size-fractionated microbial samples (0.22–1.2 µm), providing gene abundances for the dominant members of bacteria, archaea, and viruses. This dataset also has time-matched nutrient analyses, flow cytometry data, and physical parameters of the environment at a single point of sampling within a coastal ecosystem that experiences regular bloom events, facilitating a range of modeling efforts that can be leveraged to understand microbial community structure and their influences on the growth, maintenance, and senescence of phytoplankton blooms.more » « lessFree, publicly-accessible full text available November 22, 2025
-
Abstract We examined metaproteome profiles from two Arctic microbiomes during 10-day shipboard incubations to directly track early functional and taxonomic responses to a simulated algal bloom and an oligotrophic control. Using a novel peptide-based enrichment analysis, significant changes (p-value < 0.01) in biological and molecular functions associated with carbon and nitrogen recycling were observed. Within the first day under both organic matter conditions, Bering Strait surface microbiomes increased protein synthesis, carbohydrate degradation, and cellular redox processes while decreasing C1 metabolism. Taxonomic assignments revealed that the core microbiome collectively responded to algal substrates by assimilating carbon before select taxa utilize and metabolize nitrogen intracellularly. Incubations of Chukchi Sea bottom water microbiomes showed similar, but delayed functional responses to identical treatments. Although 24 functional terms were shared between experimental treatments, the timing, and degree of the remaining responses were highly variable, showing that organic matter perturbation directs community functionality prior to alterations to the taxonomic distribution at the microbiome class level. The dynamic responses of these two oceanic microbial communities have important implications for timing and magnitude of responses to organic perturbations within the Arctic Ocean and how community-level functions may forecast biogeochemical gradients in oceans.more » « less
-
Mutations in A-type nuclear lamins cause dilated cardiomyopathy, which is postulated to result from dysregulated gene expression due to changes in chromatin organization into active and inactive compartments. To test this, we performed genome-wide chromosome conformation analyses in human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) with a haploinsufficient mutation for lamin A/C. Compared with gene-corrected cells, mutant hiPSC-CMs have marked electrophysiological and contractile alterations, with modest gene expression changes. While large-scale changes in chromosomal topology are evident, differences in chromatin compartmentalization are limited to a few hotspots that escape segregation to the nuclear lamina and inactivation during cardiogenesis. These regions exhibit up-regulation of multiple noncardiac genes including CACNA1A, encoding for neuronal P/Q-type calcium channels. Pharmacological inhibition of the resulting current partially mitigates the electrical alterations. However, chromatin compartment changes do not explain most gene expression alterations in mutant hiPSC-CMs. Thus, global errors in chromosomal compartmentation are not the primary pathogenic mechanism in heart failure due to lamin A/C haploinsufficiency.more » « less
An official website of the United States government
